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1 Introduction

This paper provides a brief summary of recent developments and some perti-
nent results in the evolving theory of lattice based neural networks. The first
two sections deal with lattice based correlation memories while the remaining
two sections focus on dendritic computing. The final section outlines some new
research avenues and associated questions.

2 Matrix based associative memories

One of the first goals achieved in the development of lattice based neural net-
works also known as morphological neural networks (MNNs) was the establish-
ment of a morphological associative memory or MAM for short. In its basic
form, this model of an associative memory resembles the well-known correlation
memory or linear associative memory [5]. As in correlation encoding, the mor-
phological associative memory provides a simple method to add new associations.
A weakness in linear correlation encoding is the requirement of orthogonality of
the key vectors in order to exhibit perfect recall of the fundamental associations.
The morphological auto-associative memory does not restrict the domain of the
key vectors in any way. Thus, as many associations as desired can be encoded
into the memory (1, 2.

Lattice based associative memories are in many ways similar to the classi-
cal correlation memories but also exhibit many properties that are drastically
different. Before defining lattice based correlation, we need to define the corre-
sponding matrix operations in the lattice domain. Given two m x n matrices
A = (a;j) and B = (b;;), then then the pointwise mazimum, AV B, of A and B,
is the m x n matrix C defined by AV B = C, where c;; = a,; V b;;. Similarly, the
pointwise minimum AA B is defined as AA B = C, where ¢;; = a;; A bij. If 4 is
m x p and B is p x n, then the maz product of A and B is the matrix C =AVB,
where ¢;; = Vi, (aix +bx;j). Observe that this product is analogous to the usual
matrix product ¢;; = Y p_,(aix X bx;), with the symbol 3 replaced by V. Since
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V replaces Y in our definition, the pointwise maximum can be thought of as
matrix addition. The min product of A and B is the matrix C = A @ B, where
cij = Ah—(@ik + bi;). Finally, the lattice outer product of two vectors x,y € R"
is defined as
Btz Y1 +Tn
y xx' = e

Ym+Z1° Ym + ZTn

It is worthwhile to note that y x x' = y@x’' = y@x'.

Henceforth we shall let X = {x!,...,x*} CR® and Y = {y!,...,y*} cR™
denote two sets of pattern associations. An associative memory for the pair
(X,Y) is a transform W : R® — R™ with the property that W(x*) = y* for
€ = 1,...,k. In the special case where X = Y, the memory W is called an
auto-assoctiative memory.

For a given pair of pattern associations (X,Y’) there are two natural lattice
based m x n memories Wxy and Mxy. These are defined by

k k
Wxy = N\ [¥€ x (x6)°] and Mxy = \/ [y* x (x9)"] , (1)
e:l €=1

where x* denotes the lattice conjugate of x defined by x* = (—x)’. It has been
shown that if X =Y, then Wxx @xf = xf = Mxx @x¢ for € =1,...,k; that
is, recall is always perfect whenever the input is not distorted. The same cannot
be said when X # Y. To assure perfect recall for perfect input, the hypothesis
of the following theorem must be satisfied:

~ THEOREM 2.1 Wxy isa perfect recall memory for the pattern association
(x*,y*) if and only if each row of the matriz [y* +(x*)*] - Wxy contains a zero

entry. Similarly, Mxy is a perfect recall memory for the pattern pair (x*, y*) if

and only if each row of the matriz Mxy — [y* + (x*)*] contains a zero entry.

The theorem points to one obvious weakness of matrix correlation in the
lattice domain: in real applications it is often impossible to satisfy the hypothesis
of the theorem. Furthermore, we are still assuming perfect input for both the
auto-associative as well as hetero-associative memories. Various problems arise
when noise is introduced. It has been shown that the memories Wxx and Mxx
are extremely robust in the presence of erosive and dilative noise, respectively (1,
2]. However, both memories fail miserably in the presence of mixed (i.e., erosive
plus dilative) random noise. The method of kernels - originally proposed in (1],
generalized in [2], and further generalized in (7] - was introduced in order to
manage random noise. Although some excellent resuts were obtained in recalling
patterns from randomly distorted input patterns in the auto-associative case
using the kernel method [2], it can be easily demonstrated that the kernel method
will fail in a variety of cases. Such demonstrations became possible after the
connections between lattice dependence and the fixed points of lattice transforms
was discovered. We review these recent discoveries in the next section.
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3 New results concerning matrix based memories

Several important concepts from lattice theory need to be revisited in order to
fully understand the weaknesses and strengths of lattice correlation memories.
The first two concepts are those of lattice dependence and lattice independence.
The particular lattices pertinent in our discussion are the bounded lattice or-
dered group or blog (Rieo, V, A, +,+*), its sublattice (R, V, A, +), and the corre-
sponding vector space lattices (R}, V, A, +,+*) and (R",V, A, +). Here, Ry
denotes the extended set of real numbers with the symbols co and —oo included;
that is, Rioc = RU {—00,00}. The additions + and +°* are identical for real
numbers as well as for the extensionsa+co=0c0+a=0c0=a+*c0c=00+"a
Va € Ry and a+(—o0) = (—00)+a = —c0o =a+*(—00) = (—o0)+*aVa € R_q.
They only differ when a € {~00,00} in which case the following anti-symmetry
occurs:

—00+ 00 =00+ —00 = —00 (2)
—00 +* 00 = 00 +* —00 = o0. (3)

The notions of lattice dependence and independence mirror the notions of
linear dependence and independence. Since our application domain is pattern
recognition, which deals with real valued vectors, we restrict our discussion to
sets of vectors X = {x!,...,x*} CR} for which x* e R for £ = 1,...,k.

Definition 3.1. If {x!,...,x*} c R", then a linear minimax combination of
vectors from the set {x!,...,x*} is any vector x € R}, of form

k
x=6(x',...,x*) = \/ A(ag +x5), (4)
JEJ E=1

where J is a finite set of indices and ag; € Ry Vi€ J and V€ = 1,...,k. The
ezpression G(x!,...,x*) = Ve, /\2’:1(0.5,- +x¢) is called a linear minimax sum.

The similarity with linear sums 22;1 a,gx5 in the vector space (R™, +) is
obvious; in the vector lattice space (R}, V, A) the symbols \/ A (or A V) replace
the symbol 5 and scalar addition replaces scalar multiplication. Also, if every
scalar in the linear sum is zero, then the linear sum is the zero vector. Similarly,
according to equation (4), if for every j € J there exists an index £ € {1,...,k}
such that ag; = —o0, then x = &(x;, ... ,x*) is the null vector w= (w;,...,wn)’
of (R®,,V, +), where w; = —oco for i = 1,...,n. Similarly, if for some j € J the
scalar ag;j = o0 V{=1,..., k, then x = w*, the null vector of (RZ,, A, +) whose
coordinates are all co. Finally, in the definition of a linear minimax sum one can
choose either expression V¢ /\§=l(a£,- +x£) or A;er V:=1(bfi +x¢) as one can
be transformed into the other for appropriate indexing sets J and I [7].

The set of all linear minimax sums of vectors from {x!,...,x*} is the linear
minimaz span of the vectors and will be denoted by LM S(x!,...,x*). The sub-
set of all real valued vectorsin LM S(x!,...,x*) is denoted by LM Sg(x!, ..., x*).
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Hence LM Sg(x!,...,x*) = LMS(x!,..., x*)NR™ or, equivalently, LM Sr(x!,...
xR ={xeR:x=6(x!,...,x")}

Linear minimax sums provide for the definitions of lattice dependence and
lattice independence that are in close analogy with these concepts as defined in

linear algebra.

Definition 3.2. Suppose X = {x},...,x*} € R™. A vector x € R" is lattice
dependent on X if and only if x = S(x!,...,x*) for some linear minimaz sum
of vectors from X. The vector x is said to be lattice independent of X if and
only if it is not lattice dependent on X.

The set X is said to be lattice independent if and only if YA € {1,...,k},

x* is lattice independent of X\{x*} = {x* € X : £ # A}.

The fixed point set of Wx x is the set F(X)={xeR": Wxxx = x}. It
is easy to verify that {x € R" : Wxx M@x = x} = {x € R* : Mxx @x = x}.
Hence, Wx x and Mx x share the same fixed point set. We now summarize some
important properties of F(X) that were proven in (7):

1. If x,y € F(X), then (a+x) € F(X), (a+x)V(b+y) € F(X), and (c+x) A
(d+y) € F(X) Va,b,c,d€R.
2. If x € R™, then x is a fixed point of Wx x if and only if x is lattice dependent

on X.

3. IfX ={x}....,x*} CR*and Y = {y!,...,y*} € R®, where y¢ = a¢ + x¢
and a¢ € R for § = 1,...,k, then X is lattice independent if and only if Y
is lattice independent. Furthermore, F(X) = F(Y).

4. F(X) is a prismatic beam in R"; that is, F(X) = U.er(a + B), where B =
F(X)N{x € R" : z,, = 0} is a convex polytope.

5. If x € B and L, C R™ is the line defined by Ly = {a+x:a € R}, then Ly
has direction e = ,wheree{ =1lifi=jandel =0ifi# j. In
particular, the convex beam F(X) = Uyxes Lx has direction e.

6. F(X) is a convex sublattice of (R",V, A).

Properties one through six provide for a complete algebraic as well as geo-
metric description of F(X) with the exception that the dimensionality of F(X)
is not specified. The reason for this is that if X = {x!,... ,x*¥} C R", then it is
possible to have dimF(X) < k as well as dimF(X) > k even if X is lattice inde-
pendent. Of course, we always have dimF(X) < n, the dimension of the space.
Moreover, it is even possible to have k£ > n when X is lattice independent. This
is in contrast to sets of linearly independent vectors as well as affinely indepen-
dent sets of vectors. The notion of strong lattice independence circumvents these

undesirable properties.

Definition 3.3. A set of lattice independent vectors {x!,...,x¥} C R" is said

to be strong lattice independent if and only if for every A€ {1,...,k} there
ezists an indez j) € {1,...,n} such that
A
:r§ -—:z:fs:r; - T (5)

Vie(l,...,n} and V€ € {1,...,k}.
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The next set of properties have recently been established as a result of ex-
ploring the relationships between affine independence and strong lattice inde-
pendence (7, 8].

7. Any two lattice independent vectors are strongly lattice independent.
8. If X = {x!,...,x*} C R" is strongly lattice independent, then X is affinely

independent.

9. If X = {x!,...,x*} C R"isstrongly lattice independent, then k < dimF(X) <
n.

10. If X = {x!,...,x*} C R" is strongly lattice independent, then the points of
X are extreme pomts of the convex set F(X).

11. If X = {x!,...,x*} C R", then the vectors corresponding to the columns

of Wx x satisfy inequality (5).
12. If V € Wx x is the smallest set of column vectors of Wx x satisfying F(V) =
F(X), then V is strongly lattice independent.

According to property eight, every strongly lattice independent set of vectors

is affinely independent. The converse is generally not true; e.g., if x! = (0, 0)’,

2 = (1,1), then {x!,x?} is affinely independent, but not strong lattice in-
dendent since x? = 1 + x!. More importantly, the above properties have some
significant implications in the theory of linear spectral mixing as employed in hy-
perspectral and multispectral image analysis. There exist effective methods for
deriving the set V mentioned in property twelve [8]. According to property eight,
V is affinely independent. As a result, there now exist a computationally efficient
way of computing endmembers, which correspond to affinely independent points
in hyperspectral image cubes.

On the down side, the above listed properties seem of little help in overcoming
the inherent drawbacks of lattice correlation matrix memories in the presence
of noise. Figure 1 provides a simple visual example that exposes the core of the
problem. Here we are dealing with four patterns X = {x!,x?,x3,x%} c R2 The
fixed point set F(X) of Wx x is represented as the shaded infinite strip. Since
%2 € F(X), Wxx @%? = X = Mxx @x?. Hence, even a minutely distorted
version X2 of x2? will not be recovered by these lattice matrix memories whenever
%2 € F(X). The point x3 is in the interior of F(X). Thus any distorted version
of X3, no matter how small the distortion, will ever be correctly recalled. Figure
1 indicates this for a distorted version of X3. The arrows in the figure indicate
the orbits of points under the action of Wx x. Since the kernel method does not
affect the fixed point set F(X), these problems cannot be resolved through the

use of the kernel method.

4 Dendritic computing within the lattice domain

In order to take advantage of recent advances in neurobiology and the biophysics
of neural computation and to nudge the field of ANNs back to its original roots,
we proposed a model of single neuron computation that takes into account the
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Fig. 1. The orbits of points when using the transform Wx x: the set of fixed points of
Wx x is indicated by the shaded area, while the points resting at the end of the arrows
are transformed under the action of Wx x to points at the tips of the arrrows.

computation performed by dendrites [3). Extrapolating on this model, we con-
structed a single-layer, feedforward neural network based on dendritic computing
within the lattice domain [4). In this model, a set of n input neurons Ny, ..., N,
provides information through its axonal arborization to the dendritic trees of
a set of m neurons M,..., M,,. Explicitely, the state value of a neuron N;
(1 = 1,...,n) propagates through its axonal tree all the way to the terminal
branches that make contact with the neuron M; (j = 1,...,m). The weight of
an axonal branch of neuron N; terminating on the kth dendrite of M; is denoted
by wfjk, where the superscript £ € {0, 1} distinguishes between ezcitatory (£ = 1)
and inhibitory (£ = 0) input to the dendrite (see also Figure 2). The kth den-
drite of M; will respond to the total input received from the neurons Ni,...,Ny,
and will either accept or inhibit the received input. The computation of the kth

dendrite of M is given by

dx)=pix N N\ D7 (m+wii) (6)
i€l (k) LeL(i)
where x = (z1,...,Tn) denotes the input value of the neurons Ny, ..., N, with

z; representing the value of Ny, I(k) C {1,...,n} corresponds to the set of
all input neurons with terminal fibers that synapse on the kth dendrite of M;,
L(i) € {0,1} corresponds to the set of terminal fibers of N; that synapse on
the kth dendrite of M;, and pjx € {—1, 1} denotes the excitatory (pjxk = 1) or
inhibitory (pjx = —1) response of the kth dendrite of M; to the received input.

The value 'r;: (x) is passed to the cell body and the state of M; is a function
of the input received from all its dendrites. The total value received by M; is

given by
Ky
(x)=p; \ (%) , (7)
k=1
where K; denotes the total number of dendrites of M; and p; = *1 denotes
the response of the cell body to the received dendritic input. Here again, p; = 1

means that the input is accepted, while p; = —1 means that the cell rejects
the received input. The nert state of M; is then determined by an activation



Recent Developments in Lattice Neural Networks 7

Fig. 2. Morphological perceptron with dendritic structure. Terminations of excitatory
and inhibitory fibers are marked with e and o, respectively. Symbol Djx denotes den-
drite k of M; and K its number of dendrites. Neuron N; can synapse Djx with exci-
tatory or inhibitory fibers, e.g. weights w},-,, and wﬂ,—, respectively denote excitatory
and inhibitory fibers from N; to Djx and from N, to Dja.

function f, namely y; = f (‘rf (x)). Figure 2 provides a graphical representation
of this model. :

A modification of the lattice based perceptron led to a novel auto-associative
memory [6]. A slight modification of auto-associative memory yields a hetero-
associative memory which is robust in the presence of noise. Let X = {x!,...,x*}
Cc R® and Y = {y!,...,y*} € R™ denote the sets of desired association pat-
terns, and Ny,..., N, the set of sensory (input) neurons that receive input x
from the space R™ with N; receiving input z;. The input neurons will propa-
gate their input values z; to a set of hidden neurons H,,..., H, where each
H; has exactly one dendrite. Every input neuron NN; has exactly two axonal
fibers terminating on the dendrite of H;. The weights of the terminal fibers of
N; terminating on the dendrite of H; are given by

_[=(zl-a)if =1,
fJ'“{—(::{+a)ife=o, 8

w

wherei=1,...,nand j =1,...,k. The parameter a > 0 is a user defined noise
parameter that must satisfy the inequality a < %dmin, where

dmin = min{d(x¢,x"): £ <7, &, 7€ {1,...,k}} (9)
and d(x¢,x") denotes the Chebyshev (checkerboard) distance between the pat-
terns x¢ and x? defined by d(x¢,x?) = max{|:z:f - :z::'l 5§ = 1,...,n}. For a
given input x € R", the dendrite of the hidden unit H; computes

n 1
P(x)= A AD7 (4 w). (10)

i=1¢=0
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The state of the neuron H;; is determined by the hard-limiter activation function

1@={%0it 120 (1)

The output of H; is given by f [77 (x)] and is passed along its axonal fibers tom
output neurons My, ..., M,,. Similar to the hidden layer neurons, each output
neuron My, where h =1,...,m, has one dendrite. However, each hidden neuron
H; has exactly one excitatory axonal fiber and no inhibitory fibers terminating
on the dendrite of M. The excitatory fiber of H; terminating on My, has synaptic

weight vjn = y;,’l The computation performed by M}, is given by

k

™(s) =V (s; +vin),

j=1

(12)

= f [.,-J‘(x)], with f defined in

where s; denotes the output of H;, namely s;
M,, is the linear

equation (11). The activation function g for each output neuron

identity function g(z) = 2.
Each neuron H; will have the output value s; = 0 if and only if x is an element

of the hypercube BY = {x € R" cxl —a <3 < z} +a} and s; = —oo whenever
x € R™\ B’. Thus, the output of this network will be y = (yl,...,ym)' =
(i, .- ,y,jn)' — yJ if and only if x € B. That is, whenever x is a corrupted
version of xJ with each coordinate of x not exceeding the allowable noise level
a, then x will be associated with y7. If the amount of noise exceeds the level o,
then the network rejects the input by yielding the output vector (—00,..., -—oo)'.

Obviously, each uncorrupted pattern x€ will be associated with y¢.
A further improvement of this model is to make the noise parameter a de-

pendent on each€é=1,... , k and each coordinate i = 1,...,n. This will allow
more freedom in order to taylor the net to a specific problem. In particular, one

can define the weights

[ (el -al(i)if =1,
Wiy = {—(x? +af(j)) if £=0, -

In this way, the hyperboxes are not centered at x¢ allowing for various schemes
for creating large noise surrounds about a pattern. Care needs to be taken that
the boxes do not overlap. Figure 3 shows an example of such generalized boxes
that will associate each point in the box Bi = {x eRr:z] - al(j) £z <
z? + a?(j)} with the pattern y?. The figure illustrates the superiority of this

model over the lattice correlation memory.
To illustrate the performance of this associative memory, we use 2 visual

example consisting of the associated image pairs P = {pl,p2,p3} and Q =
{q',q?,q%} shown in Figure 4. Each p¢ is a 50x 50-pixel 256-gray scale image,
whereas each qf is a 30x50-pixel 256-gray scale image, where £ =1,2,3. Using
the standard row-scan method, each pattern image p¢ and q° was converted
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A

X,

v 74 ‘ al(2) L5
al(2) i +—a’(2) —

Fig. 3. Boxes with variable noise parameters af(j). Each pattern in the box containing
x’? will be associated with y7.

Fig. 4. The top row depicts the images p', p?, p°, which were converted into the pro-
totype patterns of the set X = {x',x? x°}, while the bottom row shows the images
used to generate the corresponding association patterns from the set Y = {y?!,y?,y°}.

/ 4
into a pair of pattern vectors x¢ = (zf, ey :1:2500) and y¢ = (yf, e :yfsoo) by

defining :rgo(r_l) 4o = pé(r,c) for r,c = 1,...,50 and, respectively, y§0(r—1) te =
¢*(r,c) for r =1,...,30 and c = 1,...,50. Thus, X = {x!,x%,x3} c R%% apnd
Y = {y!,y%,y3} C RIS,

The patterns illustrated in the top row of Fig. 5 were obtained by distorting
100% of the vector components of each x¢ randomly within the noise level ag. To
simplify the algorithm, each a(£) only depends only on £ and not on individual
coordinates. In particular, ag < %min{d(xﬂx’) : v € K(€)}, where K(§) =
{1,...,k} \ {¢}. Figure 5 shows that the refined model achieves perfect recall
association, whereas the previous model which uses one single constant a does

not with this amount of noise.
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Fig. 5. The top row shows the corrupted prototype patterns X', %*, %*, which are cor-
rectly associated by the refined model (bottom row).

5 New avenues and open questions

The number of open problems associated with lattice based neural networks
far exceeds the allowable page limitation for this article. For this reason, we
can only briefly mention a couple of new avenues for future investigations. One
obvious limitation of lattice neural networks discussed in the literature thus
far is the reliance on the Chebyshev distance for defining axonal weights. For
example, suppose we want to build a neural net that classifies all points in
the shaded infinite triangular region shown in Fig.6 as belonging to one class
and all points outside the shaded region as not belonging to that class. This
could obviously not be accomplished using any finite union of boxes (even boxes
of infinite extent; i.e., missing boundaries on one or two sides). In this case
we again need to borrow ideas from neurobiology. Neuronal signals consist of
short electrical pulses called spike trains. If two terminal axonal fibers from two
presynaptic neurons terminate in close vicinity, such as on the same dendritic
spine, a temporal summation of received spike trains seem to be taking place.

ﬁl= ﬂm‘z"’“

Fig. 6. The shaded region bounded by the lines z, = =z2 + a and z; = b. The region
cannot be specified by a lattice neural net employing the Chebyshev distance.

Incorporating these observations into the lattice model takes the following
form: suppose that two neurons N; and N, transmit information z; and Z2,
respectively, to the same terminal location (spine, etc.) on a given dendrite.
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Further suppose that N, and /V; send spike trains of length m and n, respectively,
and that the axonal branches of NV; and N, terminating on the same terminal
(spike) have respective weights w; and w,. If N, is a inhibitory neuron, then its
spike train will directly interfere with the spike train of N;. If N, is excitatory,
then the signal at the synapse will sum to mz; + mw; — (nz, + nwy). This type
of computation allows for the construction of hyperplanes with any rational
orientation. Specifically, the lattice neural net depicted in Fig.7 will classify the
region shown in Fig.6 exactly. The dendrite D; of the output neuron M computes
11(x) = —[mz; + m(-b)], since we assume that the postsynaptic response is
negative; i.e., —1. The second dendrite D, computes 72(x) = mz; + m(—a) —
(nz2). Using the hard-limiter activation function f(7) =1if7 > 0and f(r) =0
if 7 < 0, then the output of M will be 1 if and only if 7(x) = 71(x) A 72(x) > 0.
But this is the case if and only if z; > b and z; > Z-z2 + a. Hence, this network
solves the problem posed by the example illustrated in Fig.6.

Fig. 7. The spike trains of lengths m and n travelling along the axons of N, and N,
respectively, carry m copies of the input z; and n copies of the input z.

A particularly interesting application of the summation of a signals impinging
on the same synaptic site of a dendrite is the implementation of the city-block
distance d(x,y) = Y i, |zi — %il, which reduces to the Hamming distance for
boolean patterns. For example, the ball B(c) of radius a about the point x¢ € R?

using the city-block distance is shown in Fig.8. By setting weights wl = :rg -~
z§ = why, wi; = —(a§ + 2%) = wly, wh = wl; = @, and wj, = wi; = —a, and
assuming that for each i € {1,2,3,4} the terminal fiber defined by w{; shares
the same synaptic location as the fiber with weight w$;, then the simple network

shown in Fig.9 has output f(7(x)) =1 if and only if x € B(a).

Now consider a network that incorporates both the neurons discussed in this
section and the neurons defined in the preceding. What training algorithms can
be devised for such a network? Such a network should be more powerful than the
morphological perceptron discussed earlier. How do you generalize the neuron
discussed here by allowing for spike trains of variable lengths during training as
well as testing?
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$-a x x+a

Fig. 8. The ball B(a) C R? of radius alpha and center x° defined by the city-block
distance.

Fig. 9. A simple dendritic network that can classify a ball B(a) C R? defined in terms
of the city-block distance.
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